An evaluation of competing geoacoustic models and their applicability to sandy ocean sediments
Access full-text files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This dissertation studies five models that make up a cross section of the geoacoustic models that have been used to study sandy sediments: a simple fluid model, the effective density fluid model (EDFM) of Williams, the viscous grain-shearing (VGS[lambda]) model of Buckingham, the Biot-Stoll model, and the corrected and reparameterized extended Biot (CREB) model of Chotiros. The first objective is to use numerical experiments and model/data comparisons to determine the usefulness and assess the physical validity of these five models. The second objective is to ascertain the current state of knowledge of sandy sediments and describe what truths can be learned from model/data comparisons. To complete these objectives, the models' predictions of geoacoustic quantities such as wave speeds, attenuations, and bottom loss are compared with published measurements and to each other through Bayesian inference and computational studies. It is determined that while each model has its uses, no one model fully captures the wave physics of sandy sediments.