Area of review: how large is large enough for carbon storage?
Access full-text files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The Texas Gulf Coast is an attractive target for carbon storage. Stacked sand-shale layers provide large potential storage volumes and defense-in-depth leakage protection. However, multiple perforations resulting from intensive hydrocarbon exploration and production have weakened seal integrity in many favorable locations. If the ultimate goal of carbon storage is to isolate large volumes of CO2 for hundreds to thousands of years, plume migration will encounter inadequately completed wells miles away from the injection zone. Moreover, the detrimental impact of CO2 on cement could undermine the structural integrity of all contacted wells, although pressure effects subside quickly after injection. Even wells abandoned to current standards cannot be guaranteed leak-free in the long term. We describe spatial statistics extracted from the Texas RRC Well Bore database as applied to carbon storage. Although the Area of Review (AOR) has been traditionally defined by a fixed radius with the strong regulatory requirement that the injectate stays within the injection layer, buoyancy is a major characteristic of CO2 that introduces a third dimension into the Area of Review process. Using simple geological mapping to characterize structural traps, we determine the likely pathway and the contacted volume of a migrating plume. The latter can be as large as a fault compartment with dimensions of 20 km × 20 km. However, the contacted volume is ultimately a function of the total injected volume, and the specifics of each project should dictate the dimensions of the zone of endangering influence (ZEI). An option, viable for the Texas Gulf Coast, to reduce geologic uncertainty, to decrease the impact of wells, and to limit the amount of information to be collected, is to inject CO2 below the maximum penetration of most wells.