CFD evaluation of internal flow effects on turbine blade leading-edge film cooling and overall cooling with shaped hole geometries
Access full-text files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In gas turbine engines, the highest heat loads occur at the leading-edge areas of turbine blades and vanes. To protect the blades and vanes, a “showerhead” configuration of film cooling holes is often used for this location, in which several rows of holes are configured closely together to maximize film coverage. Typically, these film cooling holes are fed by impingement cooling jets, helping to cool the leading edge internally, but also changing the internal flow field. The effects of these internal flow fields on film cooling are not well known, and experimental research is very limited in its ability to analyze them. Because of this, computational fluid dynamic (CFD) simulations using RANS were used as a way to analyze these internal flow fields. To isolate the effects of the impingement jet, results were compared to a pseudo-plenum internal feed, and rotation in the hole caused by the impingement was found to be a key factor in performance. Computational results from both coolant feed configurations were compared to experimental results for the same configurations. The CFD RANS results were found to follow the same trends as the experimental results for both the impingement-fed and plenum-fed cases, suggesting that RANS is able to accurately model some of the important physics associated with leading-edge film cooling. Additionally, the effects of the impingement feed on overall cooling effectiveness were analyzed and found to be significant at lower blowing ratios but less significant at higher blowing ratios.