A comparison of mechanical properties from natural and process-induced interfaces in filament extrusion AM of polymer blends

Access full-text files

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

University of Texas at Austin

Abstract

Polymer blends are commonly tuned for specific applications to achieve desired properties otherwise inaccessible or prohibitively expensive to obtain via homopolymers. The interfacial characteristics of the polymer A-polymer B interface and resultant domain sizes govern key performance properties. Micro- and meso-scale morphology forms through the interplay of surface forces between the polymers and between each polymer and the surrounding atmosphere. Analogously, the layer-layer and road-road interfaces of material extrusion (MEX) additive manufacturing (AM) govern key performance properties of printed parts. This work explores the effect of layer height on the thermomechanical performance of polystyrene (PS)-polycarbonate (PC) blends. Filament is prepared from a 50/50 weight ratio of the two polymers and compared against dual-nozzle printing where every layer alternates between PS or PC homopolymer forming a part with an overall 50/50 polymer ratio. Typical indicators of polymer blend compatibility are also studied.

Description

LCSH Subject Headings

Citation