A Temperature-Thread Multiscale Modeling Approach for Efficient Prediction of Part Distortion by Selective Laser Melting

Date
2015
Authors
Li, C.
Liu, J.F.
Guo, Y.B.
Li, Z.Y.
Journal Title
Journal ISSN
Volume Title
Publisher
University of Texas at Austin
Abstract

Selective laser melting (SLM) is a powder bed based additive manufacturing process to manufacture functional parts. The high-temperature process will produce large tensile residual stress which leads to part distortion and negatively affect product performance. Due to the complex process mechanism and coupling multi-physics phenomena, the micro-scale single laser scan modeling approach is not practical to predict macro part distortion since it demands an exceedingly long computational time. In this study, a temperature-based multiscale modeling approach has been developed to simulate material phase transition of powder-liquid-solid for fast prediction of part distortion. An equivalent body heat flux obtained from the micro-scale laser scan can be imported as “temperature-thread” to the subsequent layer hatching process. Then the hatched layer with temperature filed can be used as a basic unit to build up the macro-scale part with different scanning strategies. The temperature history and residual stress fields during the SLM process were obtained. In addition, the part distortion can be predicted with a reasonable accuracy by comparing with the experimental data.

Description
Citation