MODELING CARBON FIBER SUSPENSION DYNAMICS FOR ADDITIVE MANUFACTURING POLYMER MELT FLOWS

Access full-text files

Date

2023

Authors

Pierce, Jason B.
Smith, Douglas E.

Journal Title

Journal ISSN

Volume Title

Publisher

University of Texas at Austin

Abstract

The addition of short carbon fibers to the feedstock of large-scale polymer extrusion/deposition additive manufacturing results in significant increases in mechanical properties dependent on the fiber distribution and orientation in the beads. In order to analyze those factors, a coupled computational fluid dynamics (CFD) and discrete element modeling (DEM) approach is developed to simulate the behavior of fibers in an extrusion/deposition nozzle flow after calibrations in simple shear flows. The DEM model uses bonded discrete particles to make up flexible and breakable fibers that are first calibrated to match Jeffery’s orbit and to produce interactions that are consistent with Advani-Tucker orientation tensor predictions. The DEM/CFD model is then used to simulate the processing of fiber suspensions in the variable flow and geometries present in extrusion/deposition nozzles. The computed results provide enhanced insight into the evolution of fiber orientation and distribution during extrusion/deposition as compared to existing models through individual fiber tracking over time and space on multiple parameters of interest such as orientation, flexure, and contact forces.

Description

LCSH Subject Headings

Citation