III-V nitride semiconductor-based ultraviolet photodetectors
Access full-text files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Visible-blind and solar-blind ultraviolet photodetectors based on GaN/AlGaN were designed, fabricated, and characterized for commercial and military applications. High performance back-illuminated solar-blind MSM achieved external quantum efficiency of ~48%. The dark current of 40x40μm MSM was less than the instrument measurement limitation of 20fA for a bias <100V. No photoconductive gain was observed. With an n-type doped high-Al ratio "window" Al₀.₆Ga₀.₄N layer, back-illuminated solar-blind p-i-n photodiode achieved a quantum efficiency of ~55% at zero-bias. Absorption edge study of both MSM and p-i-n photodetectors, based on device spectral responses, resulted in a performance comparison of MSMs and p-i-ns, as the solar-blind photodetection requires a sharp solar-blind rejection. Photoconductive detectors and avalanche photodetectors, with the internal gain advantage, have been discussed as well. A 30μm diameter GaN avalanche photodiode achieved a gain >23, with a dark current less than 100pA. The breakdown showed a positive temperature coefficient of 0.03 V/K that is characteristic of avalanche breakdown. SiC APDs, as candidates for visible-blind applications, have been designed, fabricated and characterized. An avalanche gain higher than 10⁵, with a dark current less than 1nA, showed the potential of SiC APD replacing PMTs for high sensitivity visible-blind UV detection. A silicon-based optical receiver has been presented in the Appendix. With the photodiode internal avalanche gain ~4, a sensitivity ~-6.9dBm at 10Gbps has been achieved.