Colloidal ReO3 Nanocrystals: Extra Re d-Electron Instigating a Plasmonic Response

Date

2019-09-19

Authors

Ghosh, Sandeep
Lu, Hsin-Che
Cho, Shin Hum
Maruvada, Thejaswi
Price, Murphie C.
Milliron, Delia J.

Journal Title

Journal ISSN

Volume Title

Publisher

ACS Publications

Abstract

Rhenium (+6) oxide (ReO3) is metallic in nature, which means it can sustain localized surface plasmon resonance (LSPR) in its nanocrystalline form. Herein, we describe the colloidal synthesis of nanocrystals (NCs) of this compound, through a hot-injection route entailing the reduction of rhenium (+7) oxide with a long chain ether. This synthetic protocol is fundamentally different from the more widely employed nucleophilic lysing of metal alkylcarboxylates for other metal oxide NCs. Owing to this difference, the NC surfaces are populated by ether molecules through an L-type coordination along with covalently bound (X-type) hydroxyl moieties, which enables easy switching from nonpolar to polar solvents without resorting to cumbersome ligand exchange procedures. These as-synthesized NCs exhibit absorption bands at around 590 nm (∼2.1 eV) and 410 nm (∼3 eV), which were respectively ascribed to their LSPR and interband absorptions by Mie theory simulations and Drude modeling. The LSPR response arises from the oscillation of free electron density created by the extra Re d-electron per ReO3 unit in the NC lattice, which resides in the conduction band. Further, the LSPR contribution facilitates the observation of dynamic optical modulation of the NC films as they undergo progressive electrochemical charging via ion (de)insertion. Ion (de)insertion leads to distinct dynamic optical signatures, and these changes are reversible in a wide potential range depending on the choice of the ion (lithium or tetrabutylammonium). Nanostructuring in ReO3 and the description of the associated plasmonic properties of these NCs made this optical modulation feasible, which were hitherto not reported for the bulk material. We envisage that the synthetic protocol described here will facilitate further exploration of such applications and fundamental studies of these plasmonic NCs.

Description

LCSH Subject Headings

Citation

Ghosh, S; Lu, HC; Cho, SH; Maruvada, T; Price, MC; Milliron, DJ. Colloidal ReO3 Nanocrystals: Extra Re d-Electron Instigating a Plasmonic Response. J. Am. Chem. Soc. 2019, 141(41), 16331-16343. DOI: 10.1021/jacs.9b06938.