Group II Intron Protein Localization and Insertion Sites Are Affected by Polyphosphate
dc.creator | Zhao, Junhua | en |
dc.creator | Niu, Wei | en |
dc.creator | Yao, Jun | en |
dc.creator | Mohr, Sabine | en |
dc.creator | Marcotte, Edward M. | en |
dc.creator | Lambowitz, Alan M. | en |
dc.date.accessioned | 2013-05-28T16:59:26Z | en |
dc.date.available | 2013-05-28T16:59:26Z | en |
dc.date.issued | 2008-06-24 | en |
dc.description.abstract | Mobile group II introns consist of a catalytic intron RNA and an intron-encoded protein with reverse transcriptase activity, which act together in a ribonucleoprotein particle to promote DNA integration during intron mobility. Previously, we found that the Lactococcus lactis Ll.LtrB intron-encoded protein (LtrA) expressed alone or with the intron RNA to form ribonucleoprotein particles localizes to bacterial cellular poles, potentially accounting for the intron's preferential insertion in the oriC and ter regions of the Escherichia coli chromosome. Here, by using cell microarrays and automated fluorescence microscopy to screen a transposon-insertion library, we identified five E. coli genes (gppA, uhpT, wcaK, ynbC, and zntR) whose disruption results in both an increased proportion of cells with more diffuse LtrA localization and a more uniform genomic distribution of Ll.LtrB-insertion sites. Surprisingly, we find that a common factor affecting LtrA localization in these and other disruptants is the accumulation of intracellular polyphosphate, which appears to bind LtrA and other basic proteins and delocalize them away from the poles. Our findings show that the intracellular localization of a group II intron-encoded protein is a major determinant of insertion-site preference. More generally, our results suggest that polyphosphate accumulation may provide a means of localizing proteins to different sites of action during cellular stress or entry into stationary phase, with potentially wide physiological consequences. | en |
dc.description.department | Cellular and Molecular Biology | en |
dc.description.sponsorship | This work was supported by National Institutes of Health R01 grants GM037949 to AML and GM076536 to EMM, Welch Foundation grants F-1607 to AML and F-1515 to EMM, and a Packard Foundation fellowship to EMM. | en |
dc.identifier.citation | Zhao J, Niu W, Yao J, Mohr S, Marcotte EM, et al. (2008) Group II Intron Protein Localization and Insertion Sites Are Affected by Polyphosphate. PLoS Biol 6(6): e150. doi:10.1371/journal.pbio.0060150 | en |
dc.identifier.doi | 10.1371/journal.pbio.0060150 | en |
dc.identifier.uri | http://hdl.handle.net/2152/20203 | en |
dc.language.iso | eng | en |
dc.publisher | Public Library of Science | en |
dc.rights | Attribution 3.0 United States | en |
dc.rights | CC-BY | en |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/us/ | en |
dc.subject | Bacterial genomics | en |
dc.subject | Cell disruption | en |
dc.subject | Fluorescence microscopy | en |
dc.subject | Gene disruption | en |
dc.subject | Gene targeting | en |
dc.subject | Introns | en |
dc.subject | Library screening | en |
dc.subject | Protein expression | en |
dc.title | Group II Intron Protein Localization and Insertion Sites Are Affected by Polyphosphate | en |
dc.type | Article | en |