Development of Novel Tapered Pin Fin Geometries for Additive Manufacturing of Compact Heat Exchangers

Access full-text files

Date

2016

Authors

Cohen, Julien
Bourell, David L.

Journal Title

Journal ISSN

Volume Title

Publisher

University of Texas at Austin

Abstract

Pin fin arrays are widely used to enhance forced convection heat transfer across various industries, finding application in turbine blade trailing edges, electronics cooling, and broadly for compact heat exchange. Fin shape greatly affects flow separation and turbulence generation, and optimizing performance relies on this balance between increased heat transfer and increased pressure loss along the array. Straight circular and elliptical fins are well-characterized in the literature, and there exist a scant few studies on tapered configurations with conventional cross-sections. Recent works have investigated straight pin fins with more complex shapes. Tapered, complex fin geometries represent an avenue for overall performance gains, but manufacturing them is difficult and time-consuming using traditional machining processes. The unique capabilities of additive manufacturing now allow their economical fabrication in an increasing number of fully-dense engineering materials. This work compares 21 pin fin arrays of varying fin cross-section, taper angle, taper profile, and array patterns using experimental and computational methods.

Description

LCSH Subject Headings

Citation