Automatic assessment and enhancement of streaming video quality under bandwidth and dynamic range limitations

Access full-text files

Date

2024-05

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The explosion in the amount of video content being streamed over the internet in recent years has accelerated the demand for effective and efficient methods for assessing and improving the perceptual quality of images and videos while adhering to internet bandwidth and display dynamic range limitations. Objective models of perceptual quality have found extensive use in optimizing video compression and enhancement parameters to achieve desirable streaming fidelity. In this dissertation, we develop a variety of quality modeling and quality enhancement methods targeting the streaming of standard and high dynamic range (SDR/HDR) videos over the internet, subjected to compression and tone mapping. The Visual Multimethod Assessment Fusion (VMAF) algorithm has recently emerged as a state-of-the-art approach to video quality prediction, that now pervades the streaming and social media industry. However, since VMAF requires the evaluation of a heterogeneous set of quality models, it is computationally expensive. Given other advances in hardware-accelerated encoding, quality assessment is emerging as a significant bottleneck in video compression pipelines. Towards alleviating this burden, we first propose a novel Fusion of Unified Quality Evaluators (FUNQUE) framework, by enabling computation sharing and by using a transform that is sensitive to visual perception to boost accuracy. Further, we expand the FUNQUE framework to define a collection of improved low-complexity fused-feature models that advance the state-of-the-art of video quality performance with respect to both accuracy, by 4.2% to 5.3%, and computational efficiency, by factors of 3.8 to 11 times! High Dynamic Range (HDR) videos are able to represent wider ranges of contrasts and colors than Standard Dynamic Range (SDR) videos, giving more vivid experiences. Due to this, HDR videos are expected to grow into the dominant video modality of the future. However, HDR videos are incompatible with existing SDR displays, which form the majority of affordable consumer displays on the market. Because of this, HDR videos must be processed by tone-mapping them to reduced bit-depths to service a broad swath of SDR-limited video consumers. Here, we analyzed the impact of tone-mapping operators on the visual quality of streaming HDR videos by building the first large-scale subjectively annotated open-source database of compressed tone-mapped HDR videos, containing 15,000 tone-mapped sequences derived from 40 unique HDR source contents. The videos in the database were labeled with more than 750,000 subjective quality annotations, collected from more than 1,600 unique human observers. We envision that the new LIVE Tone-Mapped HDR (LIVE-TMHDR) database will enable significant progress on HDR video tone mapping and quality assessment in the future. To this end, we make the database freely available to the community at https://live.ece.utexas.edu/research/LIVE_TMHDR/index.html. Server-side tone-mapping involves automating decisions regarding the choices of tone-mapping operators (TMOs) and their parameters to yield high-fidelity outputs. Moreover, these choices must be balanced against the effects of lossy compression, which is ubiquitous in streaming scenarios. To automate this process, we developed a novel, efficient model of objective video quality named Cut-FUNQUE that is able to accurately predict the visual quality of tone-mapped and compressed HDR videos. By evaluating Cut-FUNQUE on the LIVE-TMHDR database, we show that it achieves state-of-the-art accuracy. Finally, the deep learning revolution has strongly impacted low-level image processing tasks such as style/domain transfer, enhancement/restoration, and visual quality assessments. Despite often being treated separately, the aforementioned tasks share a common theme of understanding, editing, or enhancing the appearance of input images without modifying the underlying content. We leverage this observation to develop a novel disentangled representation learning method that decomposes inputs into content and appearance features. The model is trained in a self-supervised manner and we use the learned features to develop a new quality prediction model named DisQUE. We demonstrate through extensive evaluations that DisQUE achieves state-of-the-art accuracy across quality prediction tasks and distortion types. Moreover, we demonstrate that the same features may also be used for image processing tasks such as HDR tone mapping, where the desired output characteristics may be tuned using example input-output pairs.

Description

LCSH Subject Headings

Citation