Investigating the geochemical alterations in an aquifer due to long-term sequestration of CO2 using time-lapse seismic information

dc.contributor.advisorSepehrnoori, Kamy, 1951-en
dc.contributor.advisorSrinivasan, Sanjayen
dc.contributor.committeeMemberSen, Mrinalen
dc.creatorHan, Sang Hyonen 2015
dc.description.abstractThe effects of chemical interaction between injected CO2, brine, and formation rocks are often ignored in sequestration studies because chemical reactions are assumed to be localized to carbonate rocks that make up only a small proportion of the potential reservoirs. It is conjectured in this work that long-term exposure of certain types of clays and cement material to CO2-brine mixtures can induce chemical reactions and subsequent alteration of rock properties that can be subsequently detected in time-lapse seismic surveys. This is demonstrated using a case-study structured after the Cranfield field injection site. Geochemical alterations of the reservoir rock are quantified by performing reactive transport simulations and subsequently using rock physics models to translate the altered petrophysical properties into seismic responses. The study quantifies the long-term geochemical effects of CO2 injection on the seismic response and conversely, presents an approach to invert the reservoir regions contacted by the CO2-saturated brine based on the observed seismic response. Time lapse or passive seismic monitoring is an effective method for mapping the progress of the CO2 plume through the subsurface. But, because of the lack of resolution of the seismic information, it is necessary to use the seismic information together with prior geologic knowledge about the surface in order to identify if there is any migration of CO2 into regions that might be deemed sensitive e.g. overlying aquifers or faults. Because of uncertainties in the prior geologic description of the reservoir, the feasibility of implementing a model selection process is explored in this work. The model selection procedure utilizes the observed well data and reference seismic map to select a subset of models. The flow simulation of CO2 injection and forward seismic modeling were repeated for the newly generated reservoir models, and the seismic responses were compared for the reaction and non-reaction cases. The study showed that the effects of geochemical reactions on petrophysical properties and resultant spatial distribution of fluid saturation were visible in the seismic response. Major differences in seismic responses were detected in regions of the reservoir where significant amount of minerals were dissolved and precipitated. These regions were at the top of the reservoir due to the reactions caused by the buoyant CO2 plume. The presence of carbonate facies, even in small proportion, plays an important role in geochemical reactions and their effect is manifested at the seismic scale. The unique model selection methodology presented in this thesis is efficient at detecting the important features in the seismic and injection response that is induced by the geochemical alterations occurring in the reservoir. The results of this time-lapse study can provide new interpretation of events observed in time-lapse seismic data that might lead to a better assessment of leakage pathways and other risks.en
dc.description.departmentPetroleum and Geosystems Engineeringen
dc.subjectCarbon sequestrationen
dc.subjectTime-lapse seismicen
dc.titleInvestigating the geochemical alterations in an aquifer due to long-term sequestration of CO2 using time-lapse seismic informationen
dc.typeThesisen and Geosystems Engineeringen engineeringen University of Texas at Austinen of Science in Engineeringen

Access full-text files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
4.7 MB
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
1.84 KB
Plain Text