Bulge n And B/T In High-Mass Galaxies: Constraints On The Origin Of Bulges In Hierarchical Models




Weinzirl, Tim
Jogee, Shardha
Khochfar, S.
Burkert, Andreas
Kormendy, John

Journal Title

Journal ISSN

Volume Title



We use the bulge Sersic index n and bulge-to-total mass ratio (B/T) to explore the fundamental question of how bulges form. We perform two-dimensional bulge-disk-bar decomposition on H-band images of 143 bright, high-mass (M(*) >= 1.0 x 10(10) M(circle dot)) low-to-moderately inclined (i < 70 degrees) spirals. Our results are as follows. (1) Our H-band bar fraction (similar to 58%) is consistent with that from ellipse fits. (2) 70% of the stellar mass is in disks, 10% in bars, and 20% in bulges. (3) A large fraction (similar to 69%) of bright spirals have B/T <= 0.2, and similar to 76% have low n <= 2 bulges. These bulges exist in barred and unbarred galaxies across a wide range of Hubble types. (4) About 65% (68%) of bright spirals with n <= 2 (B/T <= 0.2) bulges host bars, suggesting a possible link between bars and bulges. (5) We compare the results with predictions from a set of ACDM models. In the models, a high-mass spiral can have a bulge with a present-day low B/T <= 0.2 only if it did not undergo a major merger since z <= 2. The predicted fraction (similar to 1.6%) of high-mass spirals, which have undergone a major merger since z <= 4 and host a bulge with a present-day low B/T <= 0.2, is a factor of over 30 smaller than the observed fraction (similar to 66%) of high-mass spirals with B/T <= 0.2. Thus, contrary to common perception, bulges built via major mergers since z <= 4 seriously fail to account for the bulges present in similar to 66% of high mass spirals. Most of these present-day low B/T <= 0.2 bulges are likely to have been built by a combination of minor mergers and/or secular processes since z <= 4.



LCSH Subject Headings


Weinzirl, Tim, Shardha Jogee, Sadegh Khochfar, Andreas Burkert, and John Kormendy. "Bulge n and B/T in high-mass galaxies: constraints on the origin of bulges in hierarchical models." The Astrophysical Journal, Vol. 696, No. 1 (May., 2009): 411.