Depth-registration of 9-component 3-dimensional seismic data in Stephens County, Oklahoma




Al-Waily, Mustafa Badieh

Journal Title

Journal ISSN

Volume Title



Multicomponent seismic imaging techniques improve geological interpretation by providing crucial information about subsurface characteristics. These techniques deliver different images of the same subsurface using multiple waveforms. Compressional (P) and shear (S) waves respond to lithology and fluid variations differently, providing independent measurements of rock and fluid properties. Joint interpretation of multicomponent images requires P-wave and S-wave events to be aligned in depth. The process of identifying P and S events from the same reflector is called depth-registration. The purpose of this investigation is to illustrate procedures for depth-registering P and S seismic data when the most fundamental information needed for depth-registration – reliable velocity data – are not available. This work will focus on the depth-registration of a 9-component 3-dimensional seismic dataset targeting the Sycamore formation in Stephens County, Oklahoma. The survey area – 16 square miles – is located in Sho-Vel-Tum oilfield. Processed P-P, SV-SV, and SH-SH wave data are available for post-stack analysis. However, the SV-data volume will not be interpreted because of its inferior data-quality compared to the SH-data volume. Velocity data are essential in most depth-registration techniques: they can be used to convert the seismic data from the time domain to the depth domain. However, velocity data are not available within the boundaries of the 9C/3D seismic survey. The data are located in a complex area that is folded and faulted in the northwest part of the Ardmore basin, between the eastern Arbuckle Mountains and the western Wichita Mountains. Large hydrocarbon volumes are produced from stratigraphic traps, fault closures, anticlines, and combination traps. Sho-Vel-Tum was ranked 31st in terms of proved oil reserves among U.S. oil fields by a 2009 survey. I will interpret different depth-registered horizons on the P-wave and S-wave seismic data volumes. Then, I will present several methods to verify the accuracy of event-registration. Seven depth-registered horizons are mapped through the P-P and SH-SH seismic data. These horizons show the structural complexity that imposes serious challenges on well drilling within the Sho-Vel-Tum oil field. Interval Vp/Vs – a seismic attribute often used as lithological indicator – was mapped to constrain horizon picking and to characterize lateral stratigraphic variations.



LCSH Subject Headings