Comparison of soft magnetic materials response to sinusoidal voltage and current excitation

Access full-text files

Date

2011-08

Authors

Tatarchuk, John Jacob

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

A pulse hysteresisgraph system was constructed capable outputting current source and voltages source waveforms. MATLAB scripts were created to analyze the collected data.
Three toroidal samples of soft magnetic materials were prepared. Theoretical modeling was done to predict the variation of effective applied magnetic fields inside the toroids from ideal assumptions due to three effects: wire spacing, cylindrical spreading, and eddy current generated fields.
Data was collected under sinusoidal voltage source and sinusoidal current source excitation at 1 kHz. Large differences in core loss were noted especially at higher field excitations. Core loss under sinusoidal current source excitation was found to always be greater than or equal to core loss under sinusoidal voltage source. Normal magnetization curves under sinusoidal current and voltage source excitation were also compared. Significant differences were apparent in the magnetization curves of one sample toroid, and slight differences noted in the curves of the other two samples. Eddy currents were offered as a primary mechanism for the difference in core loss between sinusoidal current source and sinusoidal voltage source. A formula to predict the relative eddy current losses to be expected from an arbitrary, periodic voltage waveform shape is given.

Description

text

LCSH Subject Headings

Citation