A three-pocket model for substrate coordination and specificity by the nucleotide sugar transporters SLC35A1 and SLC35A2

Date

2022-03-31

Authors

Li, Danyang (Ph. D. in cell and molecular biology)

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The CMP-sialic acid transporter SLC35A1 and UDP-galactose transporter SLC35A2 are two well-characterized nucleotide sugar transporters with distinct substrate specificities. They are in many aspects implicated in human diseases, including congenital disorders of glycosylation. Despite the biomedical relevance, mechanisms of substrate specificity are unclear. To address this critical issue, we utilized a structure-guided mutagenesis strategy and assayed a series of SLC35A1 and SLC35A2 mutants using a rescue approach. Our results suggest that three pockets in the central cavity of each transporter provide substrate specificity. The pockets comprise (1) nucleobase (residues E52, K55, and Y214 of SLC35A1; E75, K78, N235, and G239 of SLC35A2); (2) middle (residues Q101, N102, and T260 of SLC35A1; Q125, N126, Q129, Y130, and Q278 of SLC35A2); and (3) sugar (residues K124, T128, S188, and K272 of SLC35A1; K148, T152, S213, and K297 of SLC35A2) pockets. Within these pockets, two components appear to be especially critical for substrate specificity. Y214 (for SLC35A1) and G239 (for SLC35A2) in the nucleobase pocket appear to discriminate cytosine from uracil. Furthermore, Q129 and Q278 of SLC35A2 in the middle pocket appear to interact specifically with the β-phosphate of UDP while the corresponding A105 and A253 residues in SLC35A1 do not interact with CMP, which lacks a β-phosphate. Overall, our findings contribute to a molecular understanding of substrate specificity and coordination in SLC35A1 and SLC35A2 and have important implications for the understanding and treatment of diseases associated with mutations or dysregulations of these two transporters.

Description

LCSH Subject Headings

Citation