Comparison of Current Gravity Estimation and Determination Models

Date

2018-05

Authors

Hillman, Kyle

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This paper will discuss the history of gravity estimation and determination models while analyzing methods that are in development. Some fundamental methods for calculating the gravity field include spherical harmonics solutions, local weighted interpolation, and global point mascon modeling (PMC). Recently, high accuracy measurements have become more accessible, and the requirements for high order geopotential modeling have become more stringent. Interest in irregular bodies, accurate models of the hydrological system, and on-board processing has demanded a comprehensive model that can quickly and accurately compute the geopotential with low memory costs. This trade study of current geopotential modeling techniques will reveal that each modeling technique has a unique use case. It is notable that the spherical harmonics model is relatively accurate but poses a cumbersome inversion problem. PMC and interpolation models, on the other hand, are computationally efficient, but require more research to become robust models with high levels of accuracy. Considerations of the trade study will suggest further research for the point mascon model. The PMC model should be improved through mascon refinement, direct solutions that stem from geodetic measurements, and further validation of the gravity gradient. Finally, the potential for each model to be implemented with parallel computation will be shown to lead to large improvements in computing time while reducing the memory cost for each technique.

Description

LCSH Subject Headings

Citation