Pore pressure and fracture pressure prediction of deepwater subsalt environment wells in Gulf of Mexico

Access full-text files




Rabinovich, Vladimir M.

Journal Title

Journal ISSN

Volume Title



There are many complications associated with abnormally high fluid pressures in overpressured formations. Pore pressure can directly influence all parts of operations including drilling, geological studies, completion, and production. Accurate predictions of pore pressure and fracture pressure are vital aspects to the production and completion of safe, time efficient, and cost efficient projects. Knowledge of pressure distribution in the formation can greatly reduce complexities associated with drilling and completing a well. A three-method pore pressure and fracture pressure study was performed on two prospect deepwater wells located in the Gulf of Mexico. More than thirty offset wells in the greater region were initially analyzed for similarities with the two prospect wells. In the final analysis, only six wells were used to create pore pressure and fracture pressure models due to inconsistencies in similarities or lack of usable data in many of the offset wells. Pore pressure and fracture pressure models were constructed for the offset wells, and then applied and calibrated for the two prospect wells using drilling data such as mud weights, MDTs (Modular Dynamic Testing), and LOTs (Leak-off Test). Three types of pore pressure and fracture pressure models were used in the study: Eaton’s deep resistivity method; Eaton’s acoustic sonic method; and Bower’s interval seismic velocity method. Pore pressure and fracture pressure prediction was complicated by abnormal pressure in the formation due to undercompaction and seals. Both prospects were located in a deep subsalt environment. Low permeability and traps prevents fluid from escaping as rapidly as pore space compacts thus creating overpressure. Drilling through salt in deep water is expensive and risky. Elevated pore pressure and reduced fracture pressure underneath salt seals can create very tight mud weight windows and cause many drilling problems, as seen in the results of the offset wells’ pore pressure and fracture pressure models. Results indicate very small pore pressure and fracture pressure windows, or mud weight windows, because of overpressures in the formation caused by such a deep subsalt environment. Many casing points were needed in the final casing design of prospect wells to accommodate the smaller mud weight windows. Pore pressure has the most significant increase immediately below the salt, while the mud weight window remained constant or decreased with depth. The average mud weight window ranged between 1 to 2 pounds per gallon below the salt.



LCSH Subject Headings