Investigating the cyclization of enediyne analogs using density functional theory
Access full-text files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Enediynes are organic molecules that readily undergo a thermal rearrangement, now commonly known as the Bergman cyclization, to a cyclic para diradical form. Interest in this rearrangement was renewed when it was found to be crucial to the mechanism of cytotoxicity in a variety of natural products containing the enediyne structural moiety. Cyclization of these molecules leads to DNA strand scission and ultimately cell death. Recent efforts by medicinal chemists to discover therapeutically relevant enediyne derivatives have been complemented by computational approaches, which seek to compute energies and energetic barriers to cyclization that can accurately predict the behavior of these molecules in vivo. Here we demonstrate this approach for cis-hex-3-ene-1,5-diyne and two of its analogs using density functional theory, discuss the validity of its predictions, and investigate the effect of basis set on the description of these molecules’ reactivity.