LWFA With Low Energy Raman Seeded Pulses
Access full-text files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Analytical and numerical calculations of plasma wakefield excitation and particle acceleration by Raman seeded laser pulse in self-modulation regime are presented. We derive energy threshold for self-modulation of diffraction-limited pulses. The parameter range where the Raman seeded amplitude plays an important role is investigated. We show that the seeded amplitude provides a coherent control mechanism for the phase of the wakefield wave. We show that with the use of Raman seed self-modulated wakefield acceleration is achievable for the pulses of intensities much lower than those typically used in the experiments. In particular, our 2D particle-in-cell simulations show that 30 mJ pulse combined with Raman seeded pulse, which is 1% in intensity of the main pulse is capable of generating similar to1 nC of relativistic electrons.