Applications of prime numbers

dc.contributor.advisorOdell, E. (Edward)en
dc.contributor.committeeMemberDaniels, Marken
dc.creatorSchuler, Paul Lavelleen
dc.date.accessioned2012-11-27T19:59:50Zen
dc.date.available2012-11-27T19:59:50Zen
dc.date.issued2012-08en
dc.date.submittedAugust 2012en
dc.date.updated2012-11-27T19:59:57Zen
dc.descriptiontexten
dc.description.abstractThis report explores the historical development of three areas of study regarding prime numbers. The attempt to find an efficient and useful function to generate primes could be a helpful tool in the improvement of encryption. The difficulty of factoring large numbers allows the Rivest, Shamir and Adleman algorithm to be effective for public key cryptography. The distribution of primes is examined through discussion of the prime number theorem and the Riemann hypothesis. A brief case for integrating elementary number theory in secondary curriculum is also included.en
dc.description.departmentMathematicsen
dc.format.mimetypeapplication/pdfen
dc.identifier.slug2152/ETD-UT-2012-08-5929en
dc.identifier.urihttp://hdl.handle.net/2152/ETD-UT-2012-08-5929en
dc.language.isoengen
dc.subjectPrime numbersen
dc.titleApplications of prime numbersen
dc.type.genrethesisen
thesis.degree.departmentMathematicsen
thesis.degree.disciplineMathematicsen
thesis.degree.grantorUniversity of Texas at Austinen
thesis.degree.levelMastersen
thesis.degree.nameMaster of Artsen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SCHULER-MASTERS-REPORT.pdf
Size:
743.75 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.12 KB
Format:
Plain Text
Description: