Synthesis and characterization of divinyl monomers for styrene-based reaction injection molding

dc.contributor.advisorWillson, C. G. (C. Grant), 1939-en
dc.contributor.advisorBarlow, Joel W.en
dc.creatorSanchez, John Lawrenceen
dc.date.accessioned2008-08-28T21:39:10Zen
dc.date.available2008-08-28T21:39:10Zen
dc.date.issued2003en
dc.descriptiontexten
dc.description.abstractThe motivation for this project was to develop a suitable replacement crosslinker for technical divinylbenzene (DVB) for use in a styrene-based Reaction Injection Molding (RIM) system. This thesis describes the synthesis of a,w-bis(4-vinylphenyl)alkane (BVPA) compounds, the determination of their anionic homopolymerization and copolymerization kinetic parameters, and the evaluation of the physical and thermal properties of crosslinked polymers made with these compounds. A general lithium coupling synthesis was developed to produce BVPA monomers with alkyl linkages of six or more carbons. 1,8-bis(4- Vinylphenyl)octane (BVPO) was synthesized in a 30% yield for use in physical testing. 1,2-bis(4-Vinylphenyl)ethane (BVPE) was produced in sufficient quantities for both kinetic and physical testing using a Grignard coupling synthesis. The kinetics of the sec-butyllithium initiated homopolymerization of styrene, p-methylstyrene, p-t-butylstyrene (TBS), and BVPE were determined in aromatic solvents. The kinetics of the anionic copolymerization of styrene with TBS, and BVPE with TBS were also investigated. A new anionic copolymerization rate model was derived that gives an excellent fit to experimental data. The reactivity ratios of the two copolymerizations were found to be nearly ideal with rStyrene-TBS = 1.78 and rBVPE-TBS = 1.67. A simulation using experimental data predicts BVPE crosslinked TBS to have a significantly more homogenous network structure than TBS crosslinked with DVB. The use of BVPA compounds was shown to impart improved physical and thermal properties to crosslinked TBS polymers relative to divinylbenzene by virtue of their lower reactivity and flexible alkyl linkage. In particular, BVPO produced a thermoset that satisfies the material property objectives for Tg and flexural strength while favorably affecting cure shrinkage.
dc.description.departmentChemical Engineeringen
dc.format.mediumelectronicen
dc.identifierb57211504en
dc.identifier.oclc56935228en
dc.identifier.proqst3118071en
dc.identifier.urihttp://hdl.handle.net/2152/908en
dc.language.isoengen
dc.rightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.en
dc.subject.lcshMonomersen
dc.subject.lcshInjection molding of plasticsen
dc.subject.lcshStyreneen
dc.titleSynthesis and characterization of divinyl monomers for styrene-based reaction injection moldingen
dc.type.genreThesisen
thesis.degree.departmentChemical Engineeringen
thesis.degree.disciplineChemical Engineeringen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sanchezjl036.pdf
Size:
7.31 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.65 KB
Format:
Plain Text
Description: