SN 2008am: A Super-Luminous Type IIn Supernova

Access full-text files

Date

2011-03

Authors

Chatzopoulos, Emmanouil
Wheeler, J. Craig
Vinko, Jozsef
Quimby, Robert
Robinson, Edward L.
Miller, A. A.
Foley, Ryan J.
Perley, D. A.
Yuan, F.
Akerlof, C.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

We present observations and interpretation of the Type IIn supernova SN 2008am discovered by the ROTSE Supernova Verification Project (RSVP). SN 2008am peaked at approximately -22.3 mag at a redshift of z = 0.2338, giving it a peak luminosity of similar to 3 x 10(44) erg s(-1) and making it one of the most luminous supernovae ever observed. The total radiated energy is similar or equal to 2 x 10(51) erg. The host galaxy appears to be an SB1 of normal luminosity (M-r' similar to -20) with metallicity Z similar to 0.4Z(circle dot). ROTSE upper limits and detections constrain the rise time to be similar to 34 days in the rest frame, significantly shorter than similar events, SN 2006gy and SN 2006tf. Photometric observations in the ultraviolet, optical, and infrared bands (J, H, K-s) constrain the spectral energy distribution evolution. We obtained six optical spectra of the supernova, five on the early decline from maximum light and a sixth nearly a year later plus a very late time spectrum (similar to 2 yr) of the host galaxy. The spectra show no evidence for broad supernova photospheric features in either absorption or emission at any phase. The spectra of SN 2008am show strong Balmer-line and He I lambda 5876 emission with intermediate widths (similar to 25 angstrom) in the first similar to 40 days after optical maximum. The width formally corresponds to a velocity of similar to 1000 km s(-1). We examine a variety of models for the line wings and conclude that multiple scattering is most likely, implying that our spectra contain no specific information on the bulk flow velocity. We examine a variety of models for the ROTSE light curve subject to the rise time and the nature of the spectra, including radioactive decay, shocks in optically thick and optically thin circumstellar media (CSMs) and a magnetar. The most successful model is one for which the CSM is optically thick and in which diffusion of forward shock-deposited luminosity gives rise to the observed light curve. The model suggests strong mass loss and a greater contribution from the interaction of the forward shock with optically thick CSM than from the reverse shock. Diffusion of the shock-deposited energy from the forward shock is found to be important in accounting for the rising part of the light curve. Although there are differences in detail, SN 2008am appears to be closely related to other super-luminous Type IIn supernovae, SN 2006gy, SN 2006tf, and perhaps SN 2008iy, that may represent the deaths of very massive luminous-blue-variable-type progenitors and for which the luminosity is powered by the interaction of the ejecta with a dense CSM.

Department

Description

LCSH Subject Headings

Citation

Chatzopoulos, E., J. Craig Wheeler, J. Vinko, R. Quimby, E. L. Robinson, A. A. Miller, R. J. Foley et al. "SN 2008am: a super-luminous Type IIn supernova." The Astrophysical Journal, Vol. 729, No. 2 (Mar., 2011): 143.