Distributed deep neural networks

Date

2017-11-09

Authors

Mullapudi, Subhash Venkat

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Deep neural networks have become popular for solving machine learning problems in the field of computer vision. Although computers have reached parity in the task of image classification in machine learning competitions, the task of mining massive training data often takes expensive hardware a long time to process. Distributed protocol for model training can be attractive because less powerful distributed nodes are cheaper to operate than specialized high-performance cluster. Stochastic gradient descent (SGD) is a popular optimizer at the heart of many deep learning systems. To investigate the performance of distributed asynchronous SGD, Tensorflow deep learning framework was tested with Downpour SGD and Delay Compensated SGD to see effect of model training in typical commercial environments. Experimental results show that both Downpour and Delay Compensated SGD are viable protocols for distributed deep learning.

Description

LCSH Subject Headings

Citation