Internal wave generation in the presence of turning depths : laboratory models of the deep ocean
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In the ocean, internal gravity waves are generated by tidal flow over sea floor topography. An internal gravity wave is only able to freely propagate if the buoyancy frequency is greater than the driving frequency, where the buoyancy frequency is proportional to the square root of the density gradient. A turning depth is defined as a height below which the buoyancy frequency is less than the driving frequency. King et al. showed that turning depths for internal waves generated by lunar tidal flow exist in the ocean, at varying heights from the sea floor [11]. The present study is the first to examine the generation and propagation of internal waves by tidal flow over topography that lies below a turning depth. I use laboratory experiments and numerical simulations to examine the effect of these turning depths on energy flux of the internal waves generated by tidal flow over topography. I find excellent agreement between numerical and laboratory work, and I show that the internal wave energy is strongly damped by the presence of a turning depth above the topography. Further, this has strong implications for ocean energy budget calculations.