Automation of Determination of Optimal Intra-Compute Node Parallelism

Access full-text files

Date

2016

Authors

Gómez-Iglesias, Antonio
Brown, James C.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Maximizing the productivity of modern multicore and manycore chips requires optimizing parallelism at the compute node level. This is, however, a complex multi-step process. It is an iterative method requiring determining optimal degrees of parallel scalability and optimizing memory access behavior. Further, there are multiple cases to be considered, programs which use only MPI or OpenMP and hybrid (MPI +OpenMP) programs. This paper presents a set of three coordinated workflows for determining the optimal parallelism at the program level for MPI programs and at the loop level for hybrid (MPI+OpenMP) cases. The paper also details mostly automated implementations of these workflows using the PerfExpert infrastructure. Finally the paper presents case studies demonstrating both the applicability and the effectiveness of optimizing parallelism at the compute node level. The results shown in the paper will provide valuable information to further advance in the full automation of the workflows. The software implementing the parallelism scalability optimization is open source and available for download.

Description

LCSH Subject Headings

Citation