Leading edge vortex modeling and its effect on propulsor performance

dc.contributor.advisorKinnas, Spyros A.
dc.creatorTian, Ye, active 21st centuryen
dc.date.accessioned2015-02-09T15:23:16Zen
dc.date.issued2014-12en
dc.date.submittedDecember 2014en
dc.date.updated2015-02-09T15:23:16Zen
dc.descriptiontexten
dc.description.abstractA novel numerical method solves the VIScous Vorticity Equation (VISVE) in 3D in order to model the Leading Edge Vortex (LEV) of propellers is proposed and implemented in this dissertation. The spatial concentration of the vorticity is exploited in the method, which is designed to be spatially compact and numerically efficient, in the meantime, capable of modeling complicated vorticity/solid boundary interaction in 2D and 3D. The numerical model can work as a viscous correction on top of the traditional Boundary Element Method (BEM) results. The proposed method is first applied in the case of a 2D hydrofoil at high angle of attack. The results are correlated with those from Navier-Stokes (N-S) simulation. The method is then used to model the LEV and tip vortex of a 3D swept wing. The results of the 3D simulation show great similarity to those from N-S. In the end, the method is applied in the case of propellers at low advance ratios. All the essential flow characteristics (LEV and tip vortex) are predicted. The objective of this dissertation is not developing a mathematically equivalent numerical method to the full-blown Reynolds-Averaged Navier-Stokes (RANS) solver, but inventing an accurate and computationally efficient tool to model the effects of the LEV on the propeller performance for engineering's purpose.en
dc.description.departmentCivil, Architectural, and Environmental Engineeringen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/2152/28344en
dc.language.isoenen
dc.subjectLeading edge vortexen
dc.subjectVorticity equationen
dc.subjectBoundary element methoden
dc.titleLeading edge vortex modeling and its effect on propulsor performanceen
dc.typeThesisen
thesis.degree.departmentCivil, Architectural, and Environmental Engineeringen
thesis.degree.disciplineCivil Engineeringen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen

Access full-text files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TIAN-DISSERTATION-2014.pdf
Size:
14.64 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.84 KB
Format:
Plain Text
Description: