A Pyrrole-Based Triazolium-Phane with Nh and Cationic Ch Donor Groups as a Receptor for Tetrahedral Oxyanions that Functions in Polar Media

Access full-text files




Cai, Jiajia
Hay, Benjamin P.
Young, Neil J.
Yang, Xiaoping P.
Sessler, Jonathan L.

Journal Title

Journal ISSN

Volume Title



The pyrrole-based triazolium-phane 1(4+)center dot 4BF(4)(-) has been prepared via the tetraalkylation of a macrocycle originally prepared via click chemistry. It displays a high selectivity for tetrahedral oxyanions relative to various test monoanions and trigonal planar anions in mixed polar organic-aqueous media. This selectivity is solvent dependent and is less pronounced in acetonitrile. Theoretical calculations were carried out in with the chloride anion in an effort to understand the influence of solvent on the intrinsic hydrogen bonding ability of the donor groups (pyrrole N-H, benzene C-H and triazolium C-H). The host-guest interactions between receptor 1(4+)center dot 4BF(4)(-) and representative tetrahedral oxyanions were further analysed by H-1 NMR spectroscopy, and the findings proved consistent with the differences in the intrinsic strength of the various H-bond donor groups inferred from the electronic structure calculations carried out in methanol, namely that (CH)(+)-anion interactions are less important in an energetic sense than neutral CH-anion interactions in polar media. Single crystal X-ray diffraction analyses of the mixed salts 1(4+)center dot HP2O73-center dot BF4- and 31(4+)center dot 4H(2)PO(4)(-)center dot 8BF(4)(-) confirmed that receptor 1(4+) can bind the pyrophosphate and phosphate anions in the solid state.



LCSH Subject Headings


Cai, Jiajia, Benjamin P. Hay, Neil J. Young, Xiaoping Yang, and Jonathan L. Sessler. "A pyrrole-based triazolium-phane with NH and cationic CH donor groups as a receptor for tetrahedral oxyanions that functions in polar media." Chemical Science 4, no. 4 (Jan., 2013): 1560-1567.