Design and analysis of an underwater leaky wave antenna
Access full-text files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Acoustic imaging in water traditionally relies on phased arrays of active electro-acoustic transducers to steer acoustic energy in specific directions. Prevalent in ships, submarines, and autonomous underwater vehicles (AUVs), phased arrays are high in weight and processing power. One potential alternative approach to steer acoustic beams is to use a single transducer attached to a dispersive antenna that radiates or receives acoustic energy from different directions as the frequency of operation changes. This is known as a leaky wave antenna (LWA). While LWAs have been proven effective in beam steering for electromagnetic and air-borne acoustic waves, the design of an analog device in water presents a unique challenge due to the low contrast in acoustic impedance between elastic solids and water, which necessitates the consideration of fluid-elastic coupling in the design of the elastic LWA. This work presents an approach to design an elastic metamaterial waveguide coupled to an external fluid domain as one means to create an acoustic LWA for underwater operation.