Frequency-dependent mechanical properties of geomaterials : laboratory experiments and digital rock physics

Date

2021-05-11

Authors

Ikeda, Ken, 1993-

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Geoscientists often model the subsurface by studying the propagation of seismic waves. As a seismic wave propagates through a medium, its amplitude and phase change according to the medium physical properties. Geoscientists often simplify the rheology of geomaterials to elastic media where elastic properties are frequency-independent. However, geomaterials possess frequency-dependent properties. Such oversimplification can create inaccurate subsurface models. Therefore, often geomaterials should be modeled as frequency-dependent materials using appropriate attenuation models. In this dissertation, I explore the elastic properties of rocks at low-frequencies (~0.1–100 Hz) and ultrasonic frequencies (10⁵-10⁶ Hz). I use laboratory measurements to estimate elastic properties of rocks. These measurements are then compared to Digital Rock Physics (DRP) results, where the same laboratory measurements are numerically simulated on Computed-Tomographic (CT) images. The first part of this dissertation explores elastic properties of a quartz-rich sandstone at ultrasonic frequencies. I demonstrate that the laboratory-measured elastic properties could be efficiently predicted using a new DRP based technique called Segmentation-Less withOut Targets (SLOT). The SLOT method uses the local variation of X-ray attenuation in CT-images to map the density distribution of the corresponding material. Numerical simulations of wave propagations are used to estimate the elastic properties of the sample, and show a small mismatch to the laboratory measurements. The second part of the dissertation focuses on estimating low-frequency elastic properties using the SLOT technique, which has been extended to accommodate the characteristics of a polymineralic carbonate. The modified-SLOT combines segmentation-based DRP with segmentation-less DRP to create elastic property distribution maps. The DRP predictions agree with the laboratory measurements. The last part of the dissertation shows the development of a new apparatus to measure low-frequency attenuation: the Low-Frequency Module (LFM). The mechanical and electronic design of the LFM is carefully chosen to accommodate a decametric sample that can be tested at reservoir pressure-temperature conditions. The design and the limitation of the apparatus are discussed. The newly developed DRP techniques and the state-of-the-art apparatus will help geoscientists exploring the elastic properties of rocks at different bandwidths. Improved estimations of elastic properties will help to better capture subsurface features

Description

LCSH Subject Headings

Citation