Integrating Interactive Design and Simulation for Mass Customized 3D-Printed Objects - A Cup Holder Example

Access full-text files

Date

2017

Authors

Altenhofen, C.
Loosmann, F.
Mueller-Roemer, J.S.
Grasser, T.
Luu, T.H.
Stork, A.

Journal Title

Journal ISSN

Volume Title

Publisher

University of Texas at Austin

Abstract

We present an approach for integrating interactive design and simulation for customizing parameterized 3D models. Instead of manipulating the mesh directly, a simplified interface for casual users allows for adapting intuitive parameters, such as handle diameter or height of our example object – a cup holder. The transition between modeling and simulation is performed with a volumetric subdivision representation, allowing direct adaption of the simulation mesh without re-meshing. Our GPU-based FEM solver calculates deformation and stresses for the current parameter configuration within seconds with a pre-defined load case. If the physical constraints are met, our system allows the user to 3D print the object. Otherwise, it provides guidance which parameters to change to optimize stability while adding as little material as possible based on a finite differences optimization approach. The speed of our GPU-solver and the fluent transition between design and simulation renders the system interactive, requiring no pre-computation.

Description

LCSH Subject Headings

Citation