Using complex light modulation for holographic applications
Access full-text files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Complex light modulation is the ability to control a light-wave’s phase and amplitude, thereby allowing complete control of the light-wave at any spatial location. The applied optics group at The University of Texas at Austin Electrical and Computer Engineering Department created a fully complex hologram by a combination of spatial light modulators. A digital micromirror device (DMD) was used to produce a precise amplitude profile, and a liquid crystal spatial light modulator (SLM) was used to produce the phase profile. A band-limited 4-f imaging system imaged the DMD onto the SLM to create a fully complex modulated wavefront, which reconstructed a holographic image at the desired location. With this capability, it is possible to create improved imaging methods for the consumer, medical, and defense industries as well as applications in holography. Our previous research has successfully created phase-only holograms (POH), amplitude-only beam-shaping patterns, and published simulation results on full-complex modulation. This thesis provides an in-depth experimental analysis of the full-complex hologram.