Evaluation of fatigue design load models for cross-frames in steel I-girder bridges




White, Joshua Benjamin

Journal Title

Journal ISSN

Volume Title



There have been a number of advances in the level of understanding of cross-frame systems for steel I-girder bridges; however, very little work has focused on the proper loading conditions to produce an adequate estimate of the fatigue load in cross-frames. The goal of this research is to provide an improved definition of the fatigue loading for cross-frames in straight, horizontally-curved, and skewed steel I-girder bridges which will be analyzed using refined analysis techniques. In order to compare load effects, three bridges were instrumented and monitored. The bridges include: i) a straight bridge with normal supports, ii) a straight bridge with skewed supports, and iii) a horizontally curved bridge with radial supports. Data gathered from the field instrumentation was used to validate three-dimensional finite element analysis (FEA) models that were used to carry out extensive parametric analyses to improve the understanding of the behavior of cross-frame stresses as a function of truck position on the bridge. A wide range of geometrical parameters of straight and horizontally curved bridges were used to understand the general behavior of the bridges. The primary objectives of this research include the following: 1) Investigate the adequacy of the current AASHTO (American Association of State Highway and Transportation Officials) fatigue load model for the design of cross frames in steel I-girder bridges. 2) Investigate the effects of multiple presence on the design of cross-frames in steel I-girder bridges. 3) Investigate the reliability of the developed load model and identify the gaps in knowledge of cross-frame detail resistance data as it relates to the reliability of current design practices. These objectives were accomplished by examining recently collected, high-resolution, multi-lane weigh-in-motion (WIM) data, which represent actual truck traffic records in the US. The current AASHTO fatigue design load model was evaluated by comparing cross-frame load effects caused by the fatigue load model to load effects caused by simulated truck traffic representing actual live load. Influence surfaces generated from three-dimensional FEA models provided information on the stresses in select cross-frame members as a function on truck position on the bridge deck. WIM data representing real truck traffic (tens of millions of truck records) were filtered and analyzed; multi-lane data were analyzed using a cluster analysis. The statistical parameters of this WIM study were used to simulate actual live load on the three-dimensional bridge models and compare load effects to those generated by a fatigue design truck. The outcome of this study indicates the current fatigue design truck axle and weight configuration and placement of the fatigue design truck to maximize design-controlling fatigue effects for both the Fatigue I and Fatigue II AASHTO limit states is overly conservative. Stochastic techniques were used to investigate the implications of new load factors in the context of reliability-based fatigue design


LCSH Subject Headings