Simulation Of Coarsening During Laser Engineered Net Shaping

Tikare, Veena
Griffith, Michelle
Schlienger, Eric
Smugeresky, John
Journal Title
Journal ISSN
Volume Title

Laser Engineered Net_Shaping, otherwise known as LENSTM, is an advanced manufacturing technique used to fabricate complex near net shaped components directly from engineering solid models without the use of dies or machining. The ultimate objective ofthis project is to develop predictive simulation capability which will allow the LENSTM processors to determine fabrication conditions given the material, shape, and application ofthe final part. In this paper, we will present an incremental achievement to meeting the ultimate goal, a model capable ofsimulating the coarsening ofmicrostructural features under the unique thermal history to which a LENSTM part is subjected during processing. The simulation results show how grains ofvery different shapes and sizes form within the same deposition line. They also show that relatively minor changes in the dynamic temperature profile results in microstructures with vastly different characteristics. The implications ofthis work for LENSTM fabrication is that controlling the temperature profile is essential to tailoring the microstructure of a component to its application.