Interconnect optimizations for nanometer VLSI design




Zhang, Yilin, 1986-

Journal Title

Journal ISSN

Volume Title



As the semiconductor technology scales into deeper sub-micron domain, billions of transistors can be used on a single system-on-chip (SOC) makes interconnection optimization more important roughly for two reasons. First, congestion, power, timing in routing and buffering requirements make inter- connection optimization more and more challenging. Second, gate delay get- ting shorter while the RC delay gets longer due to scaling. Study of interconnection construction and optimization algorithms in real industry flows and designs ends up with interesting findings. One used to be overlooked but very important and practical problem is how to utilize over- the-block routing resources intelligently. Routing over large IP blocks needs special attention as there is almost no way to insert buffers inside hard IP blocks, which can lead to unsolvable slew/timing violations. In current design flows we have seen, the routing resources over the IP blocks were either dealt as routing blockages leading to a significant waste, or simply treated in the same way as outside-the-block routing resources, which would violate the slew constraints and thus fail buffering. To handle that, this work proposes a novel buffering-aware over-the- block rectilinear Steiner minimum tree (BOB-RSMT) algorithm which helps reclaim the “wasted” over-the-block routing resources while meeting user-specified slew constraints. Proposed algorithm incrementally and efficiently migrates initial tree structures with buffering-awareness to meet slew constraints while minimizing wire-length. Moreover, due to the fact that timing optimization is important for the VLSI design, in this work, timing-driven over-the-block rectilinear Steiner tree (TOB-RST) is also studied to optimize critical paths. This proposed TOB-RST algorithm can be used in routing or post-routing stage to provide high-quality topologies to help close timing. Then a follow-up problem emerges: how to accomplish the whole routing with over-the-block routing resources used properly. Utilizing over-the- block routing resources could dramatically improve the routing solution, yet require special attention, since the slew, affected by different RC on different metal layers, must be constrained by buffering and is easily violated. Moreover, even of all nets are slew-legalized, the routing solution could still suffer from heavy congestion problem. A new global router, BOB-Router, is to solve the over-the-block global routing problem through minimizing overflows, wire-length and via count simultaneously without violating slew constraints. Based on my completed works, BOB-RSMT and BOB-Router tremendously improve the overall routing and buffering quality. Experimental results show that proposed over-the-block rectilinear Steiner tree construction and routing completely satisfies the slew constraints and significantly outperforms the obstacle-avoiding rectilinear Steiner tree construction and routing in terms of wire-length, via count and overflows.



LCSH Subject Headings