Design and in Vitro Evaluation of a New Nano-Microparticulate System for Enhanced Aqueous-Phase Solubility of Curcumin

Date

2013

Authors

Guzman-Villanueva, Diana
El-Sherbiny, Ibrahim M.
Herrera-Ruiz, Dea
Smyth, Hugh D. C.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Curcumin, a yellow polyphenol derived from the turmeric Curcuma longa, has been associated with a diverse therapeutic potential including anti-inflammatory, antioxidant, antiviral, and anticancer properties. However, the poor aqueous solubility and low bioavailability of curcumin have limited its potential when administrated orally. In this study, curcumin was encapsulated in a series of novel nano-microparticulate systems developed to improve its aqueous solubility and stability. The nano-microparticulate systems are based entirely on biocompatible, biodegradable, and edible polymers including chitosan, alginate, and carrageenan. The particles were synthesized via ionotropic gelation. Encapsulating the curcumin into the hydrogel nanoparticles yielded a homogenous curcumin dispersion in aqueous solution compared to the free form of curcumin. Also, the in vitro release profile showed up to 95% release of curcumin from the developed nano-microparticulate systems after 9 hours in PBS at pH 7.4 when freeze-dried particles were used.

Description

LCSH Subject Headings

Citation

Guzman-Villanueva, Diana, Ibrahim M. El-Sherbiny, Dea Herrera-Ruiz, and Hugh DC Smyth. "Design and in vitro evaluation of a new nano-microparticulate system for enhanced aqueous-phase solubility of curcumin." BioMed research international 2013 (2013).