Two-dimensional ASP flood for a viscous oil

Date

2014-12

Authors

Aitkulov, Almas

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

There is a vast deposit of viscous and heavy oil, especially in Canada and Venezuela. Typically thermal methods are used to recover heavy oil. However, thermal methods are inefficient when the depth of the reservoir is high and pay thickness is low. Non-thermal methods need to be developed for viscous and heavy oils. Alkaline-surfactant-polymer (ASP) floods can be used for improving the displacement efficiency, but its effect on sweep efficiency in viscous oil recovery has not been studied. The objective of this research was to investigate 2D ASP floods in a quarter five-spot pattern. Through careful phase behavior screening, the surfactant formulation was developed that produced ultra-low interfacial tension with reservoir viscous oil (100 cp). After verifying that the design of surfactant formulation was robust and can recover more than 90% of oil in a 1D ASP sandpack flood, it was tested in a 2D geometry. Both stable and unstable tertiary ASP floods were performed in a 2D quarter five-spot sandpack using the surfactant formulation developed in 1D ASP sandpack flood. In a stable ASP quarter five-spot sandpack flood, the oil recovery was excellent (~97% of ROIP). Oil recovery in the stable 2D ASP flood behaved similar to oil recovery in the 1D stable ASP flood. However, pressure drop obtained was high which would be unsustainable in field applications. Interestingly, unstable 2D flood performed well even with an adverse mobility ratio between oil/water bank and ASP slug with a recovery of 80% ROIP. Decreasing the viscosity of ASP slug 6 times decreased the maximum pressure drop 5 times; thus, the maximum pressure drop was almost proportional to the ASP slug viscosity in a 2D pattern. This research showed that unstable ASP flood in a 2D geometry can recover significant amount of oil with a practical pressure gradient.

Description

text

LCSH Subject Headings

Citation