Microgrid availability during natural disasters




Krishnamurthy, Vaidyanathan

Journal Title

Journal ISSN

Volume Title



A common issue with the power grid during natural disasters is low availability. Many critical applications that are required during and after natural disasters, for rescue and logistical operations require highly available power supplies. Microgrids with distributed generation resources along with the grid provide promising solutions in order to improve the availability of power supply during natural disasters. However, distributed generators (DGs) such as diesel gensets depend on lifelines such as transportation networks whose behavior during disasters affects the genset fuel delivery systems and as a result affect the availability. Renewable sources depend on natural phenomena that have both deterministic as well as stochastic aspects to their behavior, which usually results in high variability in the output. Therefore DGs require energy storage in order to make them dispatchable sources. The microgrids availability depends on the availability characteristics of its distributed generators and energy storage and their dependent infrastructure, the distribution architecture and the power electronic interfaces. This dissertation presents models to evaluate the availability of power supply from the various distributed energy resources of a microgrid during natural disasters. The stochastic behavior of the distributed generators, storage and interfaces are modeled using Markov processes and the effect of the distribution network on availability is also considered. The presented models supported by empirical data can be hence used for microgrid planning.



LCSH Subject Headings