Sensing chiral amines via supramolecular chemistry and circular dichroism spectrometry

dc.contributor.advisorAnslyn, Eric V., 1960-en
dc.contributor.committeeMemberSessler, Jonathanen
dc.contributor.committeeMemberSiegel, Dionicioen
dc.contributor.committeeMemberHoffman, Daviden
dc.contributor.committeeMemberFast, Walteren
dc.contributor.committeeMemberMagnus, Philipen
dc.contributor.committeeMemberShear, Jasonen
dc.creatorDragna, Justin M.en
dc.date.accessioned2015-08-14T19:15:57Zen
dc.date.issued2011-08en
dc.date.submittedAugust 2011en
dc.date.updated2015-08-14T19:15:57Zen
dc.descriptiontexten
dc.description.abstractIn chapter 1 the principles behind circular dichroism spectroscopy and exciton coupled circular dichroism spectroscopy are outlined, and examples are cited that illustrate the utility of these methods in the determination of absolute configuration and ee of chiral amines. This provides background and context for this thesis, which mostly pertains to the sensing of chirality in amines. An exciton coupled circular dichroism method based on the induction of helical chirality in an organometallic host for sensing chiral amines is presented in chapter 2. The method can be used to determine absolute configuration by relating the sign of the first Cotton effect of the host-amine complex to the handedness of the amine. Analysis of the primary circular dichroism optical data is by principal component analysis allows for differentiation of the analytes based on their idendity and handedness. A novel circular dichroism method for detecting chiral amines is discussed in chapter 3. The method uses a highly efficient derivatization method to convert the primary amine into a bidentate imine. Three equivalents of the imine are then assembled together by coordination to Fe(II). The proximity and chiral orientation of the imines leads to exciton coupled circular dichroism, which is of utility in the determination of absolute configuration. Additionally, there is a metal-to-ligand charge transfer band in the visible region that can be used to develop calibration curves, which allow for the determination of the enantiomeric excess of unknown samples with an absolute error of ±5%. Chapter 4 details another imine based circular dichroism method for chiral amines. The method uses a commercially available aldehyde, Fe(II), and circular dichroism spectrometry to sense chirality in amines. It is shown that the circular dichroism signals in the ultraviolet spectrum vary predictably with the handedness of the chiral amine, which has potential applications in the determination of absolute configuration. By developing calibraton curves, signals in the visible spectrum can be used to determine enantiomeric excess with an absolute error of ±6%. Analyzing the primary circular dichroism optical data with linear discriminant analysis allows for differentiation between amines based on their identity and handedness. Finally, chapter 5 illustrates the potential of using the thermodynamic parameters of partitioning between water and octanol as a predictive tool for estimating the contributions of hydrophobicity to host-guest binding events. This is done by showing a relationship between the thermodynamics of partitioning and thermodynamics of hydrophobic binding events for a series of guests and cyclodextrin. A plot of the thermodynamic parameters of binding of a variety of guests to cyclodextrin as a function of the thermodynamic parameters of partitioning between water and octanol shows a linear relationship for a series of alcohols.en
dc.description.departmentChemistryen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/2152/30362en
dc.subjectCircular dichroismen
dc.subjectIron(II)en
dc.subjectChiral amineen
dc.subjectEnantiomeric excessen
dc.titleSensing chiral amines via supramolecular chemistry and circular dichroism spectrometryen
dc.typeThesisen
thesis.degree.departmentChemistryen
thesis.degree.disciplineOrganic Chemistryen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DRAGNA-DISSERTATION-2011.pdf
Size:
4.21 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.12 KB
Format:
Plain Text
Description: