Optimizing the Tensile Strength for 3D Printed PLA Parts
Access full-text files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This research investigates on how extruder nozzle temperature, model infill rate (i.e. density) and number of shells affect the tensile strength of three-dimensional polylactic acid (PLA) products manufactured with the fused deposition model technology. Our goal is to enhance the quality of 3D printed products using the Makerbot Replicator. In the last thirty years, additive manufacturing has been increasingly commercialized, therefore, it is critical to understand properties of PLA products to broaden the use of 3D printing. We utilize a Universal Tensile Machine and Quality Engineering to comprehend tensile strength characteristics of PLA. Tensile strength tests are performed on PLA specimens to analyze their resistance to breakage. Statistical analysis of the experimental data collected shows that extruder temperature and model infill rate (i.e. density) affect tensile strength.