Search engine For Twitter sentiment analysis

dc.contributor.advisorLin, Lizhen, Ph. D.en
dc.contributor.committeeMemberKeitt, Timothyen
dc.creatorChen, Jiajun, M.S. in Statisticsen
dc.date.accessioned2015-11-16T18:06:35Zen
dc.date.available2015-11-16T18:06:35Zen
dc.date.issued2015-05en
dc.date.submittedMay 2015en
dc.date.updated2015-11-16T18:06:35Zen
dc.descriptiontexten
dc.description.abstractThe purpose of sentiment analysis is to determine the attitude of a writer or a speaker with respect to some topic or his feeling in a document. Thanks to the rise of social media, nowadays there are numerous data generated by users. Mining and categorizing these data will not only bring profits for companies, but also benefit the nation. Sentiment analysis not only enables business decision makers to better understand customers' behaviors, but also allows customers to know how the public feel about a product before purchasing. On the other hand, the aggregation of emotions will effectively measure the public response toward an event or news. For example, the level of distress and sadness will increase significantly after terror attacks or natural disaster. In our project, we are going to build a search engine that allows users to check the sentiment of his query. Some of previous researches on classifying sentiment of messages on micro-blogging services like Twitter have tried to solve this problem but they have ignored neutral tweets, which will result in problematic results (12). Our sentiment analysis will also be based on tweets collected from twitter, since twitter can offer sufficient and real-time corpora for analysis. We will preprocess each tweet in the training set and label it as positive, negative or neutral. As we use words in the tweet as the feature for our model, different features will be used. We will show that accuracy achieved by different machine learning algorithms (Naïve Bayes, Maximum Entropy) can be improved with a feature vector obtained by using bigrams (5). In our practice, we find that Naive Bayes has better performance than Maximum Entropy.en
dc.description.departmentStatisticsen
dc.format.mimetypeapplication/pdfen
dc.identifierdoi:10.15781/T2SS51en
dc.identifier.urihttp://hdl.handle.net/2152/32489en
dc.language.isoenen
dc.subjectTwitteren
dc.subjectSentiment analysisen
dc.subjectSearch engineen
dc.titleSearch engine For Twitter sentiment analysisen
dc.typeThesisen
thesis.degree.departmentStatisticsen
thesis.degree.disciplineStatisticsen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelMastersen
thesis.degree.nameMaster of Science in Statisticsen

Access full-text files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CHEN-MASTERSREPORT-2015.pdf
Size:
965.9 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.84 KB
Format:
Plain Text
Description: