Feedback In Luminous Obscured Quasars

Date

2011-05

Authors

Greene, Jenny E.
Zakamska, Nadia L.
Ho, Luis C.
Barth, Aaron J.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

We use spatially resolved long-slit spectroscopy from Magellan to investigate the extent, kinematics, and ionization structure in the narrow-line regions of 15 luminous, obscured quasars with z < 0.5. Increasing the dynamic range in luminosity by an order of magnitude, as well as improving the depth of existing observations by a similar factor, we revisit relations between narrow-line region size and the luminosity and linewidth of the narrow emission lines. We find a slope of 0.22 +/- 0.04 for the power-law relationship between size and luminosity, suggesting that the nebulae are limited by availability of gas to ionize at these luminosities. In fact, we find that the active galactic nucleus is effectively ionizing the interstellar medium over the full extent of the host galaxy. Broad (similar to 300-1000 km s(-1)) linewidths across the galaxies reveal that the gas is kinematically disturbed. Furthermore, the rotation curves and velocity dispersions of the ionized gas remain constant out to large distances, in striking contrast to normal and starburst galaxies. We argue that the gas in the entire host galaxy is significantly disturbed by the central active galactic nucleus. While only similar to 10(7)-10(8) M-circle dot worth of gas are directly observed to be leaving the host galaxies at or above their escape velocities, these estimates are likely lower limits because of the biases in both mass and outflow velocity measurements and may in fact be in accord with expectations of recent feedback models. Additionally, we report the discovery of two dual obscured quasars, one of which is blowing a large-scale (similar to 10 kpc) bubble of ionized gas into the intergalactic medium.

Department

Description

LCSH Subject Headings

Citation

Greene, Jenny E., Nadia L. Zakamska, Luis C. Ho, and Aaron J. Barth. "Feedback in Luminous Obscured Quasars." The Astrophysical Journal, Vol. 732, No. 1 (may., 2011): 9.