Imaging and control of magnetization dynamics for spintronic devices
Access full-text files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
As features on integrated circuits continue to shrink, currently at 22 nm and predicted to approach 10 nm by 2020, the semiconductor industry is rapidly brushing up against the fundamental limits of electric charge and current based devices. These limits are due to the fact that charges are being pushed around in tiny areas and they repel one another with significant force. Fortunately, there are many other degrees of freedom in solids that do not suffer from these limitations and are just waiting to be harnessed in useful devices. This idea is behind all of the fields that have lately been proliferating ending in -onics, photonics, plasmonics, phononics, and of most relevance to this dissertation spintronics. Spintronics refers to a field of research wherein ways are sought to utilize the spin property of the electron in devices. One of the most attractive aspects of electron spin is that it can be used to store (transiently or permanently), process, and transmit information. The main challenge in spintronics is accessing the spin degree of freedom. Until the discovery of the giant magnetoresistance effect in the late 1980's, the only way to manipulate the electron spin was through a magnetic field. Recent developments have shown that electron spins can be controlled with direct currents of both heat and electrons, which have the benefit of being easy to generate and direct without interfering over a large area. The purpose of this dissertation is to study methods of controlling the dynamics of magnetization in thin films for spintronic applications by imaging the spin wave intensity in devices. To this end we have constructed a micro-focus Brillouin Light Scattering system to map the intensity of spin waves propagating in thin ferromagnetic films on the sub-micron scale. We have studied issues relating to fundamental issues of spin wave propagation in thin films. We have investigated the possibility of spin wave amplification with direct charge currents and spin currents generated by the spin Hall effect. Furthermore, we have demonstrated the ability to measure the magnon and phonon temperatures, which is important for studies of thermal transport.
Department
Description
text