Meta-Analysis of Microarray Data Using a Pathway-Based Approach Identifies a 37-Gene Expression Signature for Systemic Lupus Erythematosus in Human Peripheral Blood Mononuclear Cells

Access full-text files




Arasappan, Diana
Tong, Weida
Mummaneni, Padmaja
Fang, Hong
Amur, Shashi

Journal Title

Journal ISSN

Volume Title



A number of publications have reported the use of microarray technology to identify gene expression signatures to infer mechanisms and pathways associated with systemic lupus erythematosus (SLE) in human peripheral blood mononuclear cells. However, meta-analysis approaches with microarray data have not been well-explored in SLE. Methods: In this study, a pathway-based meta-analysis was applied to four independent gene expression oligonucleotide microarray data sets to identify gene expression signatures for SLE, and these data sets were confirmed by a fifth independent data set. Results: Differentially expressed genes (DEGs) were identified in each data set by comparing expression microarray data from control samples and SLE samples. Using Ingenuity Pathway Analysis software, pathways associated with the DEGs were identified in each of the four data sets. Using the leave one data set out pathway-based meta-analysis approach, a 37-gene metasignature was identified. This SLE metasignature clearly distinguished SLE patients from controls as observed by unsupervised learning methods. The final confirmation of the metasignature was achieved by applying the metasignature to a fifth independent data set. Conclusions: The novel pathway-based meta-analysis approach proved to be a useful technique for grouping disparate microarray data sets. This technique allowed for validated conclusions to be drawn across four different data sets and confirmed by an independent fifth data set. The metasignature and pathways identified by using this approach may serve as a source for identifying therapeutic targets for SLE and may possibly be used for diagnostic and monitoring purposes. Moreover, the meta-analysis approach provides a simple, intuitive solution for combining disparate microarray data sets to identify a strong metasignature. Please see Research Highlight:


LCSH Subject Headings


Arasappan, Dhivya, Weida Tong, Padmaja Mummaneni, Hong Fang, and Shashi Amur. "Meta-analysis of microarray data using a pathway-based approach identifies a 37-gene expression signature for systemic lupus erythematosus in human peripheral blood mononuclear cells." BMC medicine, Vol. 9, No. 1 (May, 2011): 1.