The Spitzer c2d Survey Of Nearby Dense Cores. X. Star Formation In L673 And Cb188

Access full-text files

Date

2010-12

Authors

Tsitali, Anastasia E.
Bourke, Tyler L.
Peterson, Dawn E.
Myers, Phillip C.
Dunham, Michael M.
Evans, Neal J.
Huard, Tracy L.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

L673 and CB188 are two low-mass clouds isolated from large star-forming regions that were observed as part of the Spitzer Legacy Project "From Molecular Clouds to Planet Forming disks" (c2d). We identified and characterized all the young stellar objects (YSOs) of these two regions and modeled their spectral energy distributions (SEDs) to examine whether their physical properties are consistent with values predicted from the theoretical models and with the YSO properties in the c2d survey of larger clouds. Overall, 30 YSO candidates were identified by the c2d photometric criteria, 27 in L673 and 3 in CB188. We confirm the YSO nature of 29 of them and remove a false Class III candidate in L673. We further present the discovery of two new YSO candidates, one Class 0 and another possible Class I candidate in L673, therefore bringing the total number of YSO candidates to 31. Multiple sites of star formation are present within L673, closely resembling other well-studied c2d clouds containing small groups such as B59 and L1251B, whereas CB188 seems to consist of only one isolated globule-like core. We measure a star formation efficiency (SFE) of 4.6%, which resembles the SFE of the larger c2d clouds. From the SED modeling of our YSO sample we obtain envelope masses for Class I and Flat spectrum sources of 0.01-1.0 M-circle dot. The majority of Class II YSOs show disk accretion rates from 3.3 x 10(-10) to 3 x 10(-8) M-circle dot yr(-1) and disk masses that peak at 10(-4) to 10(-3) M-circle dot. Finally, we examined the possibility of thermal fragmentation in L673 as the main star-forming process. We find that the mean density of the regions where significant YSO clustering occurs is of the order of similar to 10(5) cm(-3) using 850 mu m observations and measure a Jeans Length that is greater than the near-neighbor YSO separations by approximately a factor of 3-4. We therefore suggest that other processes, such as turbulence and shock waves, may have had a significant effect on the cloud's filamentary structure and YSO clustering.

Department

Description

LCSH Subject Headings

Citation

NASA 1224608, 1288664, 1407, NNX07AJ72G, 1279198, 1288806, 1342425
NSF AST-0607793, AST-0708158
Korea government (MEST) 2009-0062866
Ministry of Education, Science and Technology 2010-0008704