Application of polarization sensitive optical coherence tomography (PS-OCT) and phase sensitive optical coherence tomography (PhS-OCT) for retinal diagnostics

Date
2011-05
Authors
Paranjape, Amit Shrikant
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

An Enhanced Polarization-Sensitive Swept Source Optical Coherence Tomography (EPS-SS-OCT) instrument for high sensitivity cross-sectional imaging of Retinal Nerve Fiber Layer (RNFL) has been designed, constructed, and verified. The instrument is capable of measuring the thickness and birefringence of the RNFL. Birefringence change of the RNFL could serve as an early indicator of glaucoma. The associated image processing methods for completely automated, time efficient algorithm to segment the RNFL in images of the human retina recorded by the EPS-SS-OCT. Detected RNFL boundaries are used to compute peripapillary thickness maps. Numerical algorithms to compute the birefringence of the detected RNFL layer are presented along with the associated phase retardation and birefringence peripapillary maps. Glaucoma affects the vitality of retinal ganglion cell axons in the retinal nerve fiber layer (RNFL) and may be clinically detected through a change in RNFL birefringence. Comprehensive peripapillary maps of healthy and glaucoma suspect human RNFL birefringence were constructed using EPS-SS-OCT.
Presence of macrophages is a hallmark of several retinal diseases such as drusen and age related macular degeneration. Application of photothermal Optical Coherence Tomography (OCT) to detect macrophages in ex vivo arteries which have engulfed nanoclusters of gold coated iron oxide (nanorose) is reported. Nanorose engulfed by macrophages in arteries absorb incident laser (800nm) energy and cause optical pathlength (OP) variation which is measured using photothermal OCT. OP variation in polydimethyl siloxane tissue phantoms containing varying concentrations of nanorose match values predicted from nanoparticle and material properties. Measurement of OP variation in arteries in response to laser excitation provides an estimate of nanorose concentration in arteries 2.5x109 particles/ml. OP variation in nanoparticle containing artery sections and tissue phantoms taking up nanorose has a different magnitude and profile from that observed in control aorta and phantoms without macrophages and is consistent with macrophage presence as identified with RAM-11 histology staining. Our results suggest that tissue regions with macrophages taking up nanorose can be detected using photothermal OCT.

Description
text
Citation