Ozonation of erythromycin and the effects of pH, carbonate and phosphate buffers, and initial ozone dose

Date
2011-08
Authors
Huang, Ling, Ph. D.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

The ubiquitous presence and chronic effect of pharmaceuticals is one of the emerging issues in environmental field. As a result of incomplete removal by sewage treatment plants, pharmaceuticals are released into the environment and drinking water sources. On the other hand, conventional drinking water treatment processes such as coagulation, filtration and sedimentation are reported to be ineffective at removing pharmaceuticals. Therefore, the potential presence of pharmaceuticals in finished drinking water poses a threat on public health. Antibiotics, as an important group of pharmaceuticals, are given special concerns because the potential development of bacteria-resistance. Ozonation and advanced oxidation processes are demonstrated to be quite effective at removing pharmaceuticals. The oxidation of pharmaceuticals is caused by ozone itself and hydroxyl radicals that are generated from ozone decomposition. Whether ozone or hydroxyl radicals are the primary oxidant depends on the specific pharmaceutical of interest and the background water matrix. In this research, erythromycin, a macrolide antibiotic, was chosen as the target compound because of its high detection frequency in the environment and its regulation status. The objective of this research was to investigate the removal performance of erythromycin by ozonation from the standpoint of kinetics. The effects of pH, carbonate and phosphate buffers, and initial ozone dose on ozonation of erythromycin were also studied. The second-order rate constant for the reaction between deprotonated erythromycin and ozone was determined to be 4.44x10⁹ M⁻¹·s⁻¹ while protonated erythromycin did not react with ozone. Ozone was determined to be the primary oxidant for erythromycin removal by ozonation. pH was found to have great positive impact on the degradation of erythromycin by ozonation due to the deprotonation of erythromycin at high pH. Carbonate and phosphate buffers were found to have negligible effects on the degradation of erythromycin by ozonation. Initial ozone dose showed a positive impact on the total erythromycin removal rate by ozonation.

Description
text
Citation