A framework for developing road risk indices using quantile regression based crash prediction model

Access full-text files

Date

2011-08

Authors

Wu, Hui, doctor of civil engineering

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Safety reviews of existing roads are becoming a popular practice of many agencies nationally and internationally. Knowing road safety information is of great importance to both policymakers in addressing safety concerns and travelers in managing their trips. There have been various efforts in developing methodologies to measure and assess road safety in an effective manner. However, the existing research and practices are still constrained by their subjective and reactive nature. The goal of this research is to develop a framework of Road Risk Indices (RRIs) to assess road risks of existing highway infrastructure for both road users and agencies based on road geometrics, traffic conditions, and historical crash data. The proposed RRIs are intended to give a comprehensive and objective view of road safety, so that safety problems can be identified at an early stage before they rise in the form of accidents. A methodological framework of formulating RRIs that integrates results from crash prediction models and historical crash data is proposed, and Linear Referencing tools in the ArcGIS software are used to develop digital maps to publish estimated RRIs. These maps provide basic Geographic Information System (GIS) functions, including viewing and querying RRIs, and performing spatial analysis tasks. A semi-parameter count model and quantile regression based estimation are proposed to capture the specific characteristics of crash data and provide more robust and accurate predictions on crash counts. Crash data collected on Interstate Highways in Washington State for the year 2002 was extracted from the Highway Safety Information System (HSIS) and used for the case study. The results from the case study show that the proposed framework is capable of capturing statistical correlations between traffic crashes and influencing factors, leading to the effective integration of safety information in composite indices.

Description

text

LCSH Subject Headings

Citation