Salt tectonics and sequence-stratigraphic history of minibasins near the Sigsbee Escarpment, Gulf of Mexico

Access full-text files




Montoya, Patricia

Journal Title

Journal ISSN

Volume Title



The focus of this research is to understand the stratigraphic and structural evolution of lower-slope minibasins in the Gulf of Mexico by examining the influence of salt tectonics on sediment transport systems and deep-water facies architecture. Results showed that gravitational subsidence and shortening can cause variations in the relief of salt massifs on opposing sides of a minibasin. These bathymetric variations, combined with changes in sedimentation rates through time, affected not only the distribution of deep-water facies inside the minibasins, but also influenced the evolution of sediment transport systems between minibasins. In order to understand the evolution of salt massifs, this dissertation presents a new approach to evaluate qualitatively the rate of relative massif uplift based on depoaxis shifts and channel geometries identified in minibasins surrounded by mobile salt. From these results it was established that compression was long-lived, and that extension only dominated during late intervals. Stratigraphic analyses showed that there is a strong cyclicity in deep-water facies stacking patterns within lower-slope minibasins, related primarily to cyclical changes in sedimentation rates. A typical sequence starts with a period of slow sedimentation associated with drape facies above each sequence boundary. Then, towards the middle and final stages of the sequence, sedimentation rates increase and turbidity flows fill the minibasin. Previous studies describe processes of fill-and-spill for two adjacent minibasins in the upper and middle slope. However, these models fail to adequately explain fill-andspill processes in lower slope minibasins surrounded by mobile salt. In particular, they do not consider the effect of variations in bathymetric relief of the intervening massif, nor do they examine multidirectional connections between proximal and distal minibasins. A new dynamic-salt fill-and-spill model is proposed in this dissertation in order to understand the origin and distribution of sediment pathways and variations in connection styles. In this model, connection styles are controlled by changes in salt massifs relief and sedimentation rates through time. Four connection styles exist between minibasins: no connection, wide connection, narrow connection and bypass connection. Low sedimentation rates tend to shut down connection between minibasins, whereas high sedimentation rates favor development of pathways that connect minibasins. In summary, the most important contribution from this research is that variations in salt-massif relief, combined with changes in sedimentation rates through time, can yield different filling histories and connection styles for nearby minibasins. So by understanding the influence of these factors, the complicated task of identifying sediment pathways in salt-controlled environments can be attempted in a more effective way.