Three-dimensional gas migration and gas hydrate systems of south Hydrate Ridge, offshore Oregon

Access full-text files




Graham, Emily Megan

Journal Title

Journal ISSN

Volume Title



Hydrate Ridge is a peanut shape bathymetric high located about 80 km west of Newport, Oregon on the Pacific continental margin, within the Cascadia subduction zone’s accretionary wedge. The ridge's two topographic highs (S. and N. Hydrate Ridge) are characterized by gas vents and seeps that were observed with previous ODP initiatives. In 2008, we acquired a 3D seismic reflection data set using the P-Cable acquisition system to characterize the subsurface fluid migration pathways that feed the seafloor vent at S. Hydrate Ridge.

The new high-resolution data reveal a complex 3D structure of localized faulting within the gas hydrate stability zone (GHSZ). We interpret two groups of fault-related migration pathways. The first group is defined by regularly- and widely-spaced (100-150 m) faults that extend greater than 300ms TWT (~ 250 m) below seafloor and coincide with the regional thrust fault orientations of the Oregon margin. The deep extent of these faults makes them potential conduits for deeply sourced methane and may include thermogenic methane, which was found with shallow drilling during ODP Leg 204. As a fluid pathway these faults may complement the previously identified sand-rich, gas-filled stratigraphic horizon, Horizon A, which is a major gas migration pathway to the summit of S. Hydrate Ridge. The second group of faults is characterized by irregularly but closely spaced (~ 50 m), shallow fractures (extending < 160ms TWT below seafloor, ~ 115 m) found almost exclusively in the GHSZ directly beneath the seafloor vent at the summit of S. Hydrate Ridge. These faults form a closely-spaced network of fractures that provide multiple migration pathways for free gas entering the GHSZ to migrate vertically to the seafloor. We speculate that the faults are the product of hydraulic fracturing due to near-lithostatic gas pressures at the base of the GHSZ. These fractures may fill with hydrate and develop a lower permeability, which will lead to a buildup of gas pressures below the GHSZ. This may lead to a vertical propagation of new fractures to release the overpressure, which results in the high concentration of shallow fractures within the GHSZ seen in the 2008 data.



LCSH Subject Headings